Electric current density imaging via an accelerated iterative algorithm with joint sparsity constraints

نویسندگان

  • Gabriella Bretti
  • Massimo Fornasier
  • Francesca Pitolli
چکیده

Many problems in applied sciences require to spatially resolve an unknown electrical current distribution from its external magnetic field. Electric currents emit magnetic fields which can be measured by sophisticated superconducting devices in a noninvasive way. Applications of this technique arise in several fields, such as medical imaging and non-destructive testing, and they involve the solution of an inverse problem. Assuming that each component of the current density vector possesses the same sparse representation with respect to a preassigned multiscale basis, allows us to apply new regularization techniques to the magnetic inverse problem. The solution of linear inverse problems with sparsity constraints can be efficiently obtained by iterative algorithms based on gradient steps intertwined with thresholding operations. We test this algorithms to numerically solve the magnetic inverse problem with a joint sparsity constraint.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Accelerated Projected Gradient Method for Linear Inverse Problems with Sparsity Constraints

Regularization of ill-posed linear inverse problems via l1 penalization has been proposed for cases where the solution is known to be (almost) sparse. One way to obtain the minimizer of such an l1 penalized functional is via an iterative soft-thresholding algorithm. We propose an alternative implementation to l1-constraints, using a gradient method, with projection on l1-balls. The correspondin...

متن کامل

An Iterative Algorithm for Nonlinear Inverse Problems with Joint Sparsity Constraints in Vector Valued Regimes and an Application to Color Image Inpainting

This paper is concerned with nonlinear inverse problems where data and solution are vector valued and, moreover, where the solution is assumed to have a sparse expansion with respect to a preassigned frame. We especially focus on such problems where the different components of the solution exhibit a common or so–called joint sparsity pattern. Joint sparsity means here that the measure (typicall...

متن کامل

Neuroelectric Current Localization from Combined EEG/MEG Data

EEG/MEG devices record external signals which are generated by the neuronal electric activity of the brain. The localization of the neuronal sources requires the solution of the neuroelectromagnetic inverse problem which is highly ill-posed and ill-conditioned. We provide an iterative thresholding algorithm for recovering neuroeletric current densities within the brain through combined EEG/MEG ...

متن کامل

Adaptive Iterative Thresholding Algorithms for Magnetoenceophalography (MEG)

We provide fast and accurate adaptive algorithms for the spatial resolution of current densities in MEG. We assume that vector components of the current densities possess a sparse expansion with respect to preassigned wavelets. Additionally, different components may also exhibit common sparsity patterns. We model MEG as an inverse problem with joint sparsity constraints, promoting coupling of n...

متن کامل

Two-stage Stochastic Programing Based on the Accelerated Benders Decomposition for Designing Power Network Design under Uncertainty

In this paper, a comprehensive mathematical model for designing an electric power supply chain network via considering preventive maintenance under risk of network failures is proposed. The risk of capacity disruption of the distribution network is handled via using a two-stage stochastic programming as a framework for modeling the optimization problem. An applied method of planning for the net...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009